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Abstract

We study a new family of distributions defined by the minimum of the Poisson random number of independent and
identically distributed random variables having the Topp Leone-G distribution. Some mathematical properties of the new
family are derived. Maximum likelihood estimation of the model parameters is investigated. Two special models of the new
family are discussed. We perform three applications to real data sets to show the potentiality of the proposed family. In order
to test the validity of the new family, a modified Chi-squared goodness-of-fit test based on Nikulin-Rao-Robson statistics is
proposed theoretically.
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1. Introduction

In the statistical literature, several G classes of distributions have been constructed using zero trun-
cated Poisson (ZTP) distribution such as the complementary generalized transmuted Poisson G family by
Alizadeh et al. [1], the exponentiated generalized G Poisson family of distributions by Aryal and Yousof
[3], the odd log-logistic Poisson G family of distributions by Alizadeh et al. [2], among others. On this
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article we introduce a new flexible version of the Topp Leone G family of distributions via the ZTP dis-
tribution in Section 2. Section 3 provides a useful representation. Some special models are presented in
Section 4. In Section 5, we derive some of the mathematical properties of the new family. Maximum like-
lihood estimation for the model parameters under uncensored data is addressed in Section 6. In Section
7, the potentiality of the proposed class is illustrated by means of three real data sets. A goodness-of-fit
test for TL-GP family in complete data case is presented in Section 8. Finally, Section 9 provides some
concluding remarks.

2. Genesis and motivation of the new family

Suppose that a system has N subsystems functioning independently at a given time where N has
ZTP distribution with parameter λ. It is the conditional probability distribution of a Poisson-distributed
random variable (r.v.), given that the value of the random variable is not zero. The probability mass
function (pmf) of N is given by

P (N = n) =
λne−λ

n! (1 − e−λ)
, n = 1, 2, . . . .

We note that for ZTP variable the expected value and variance are respectively given by

µ(N) = E(N) = λ
(
1 − e−λ

)−1
and V(N) =

λ+ λ2

1 − e−λ
−

λ2

(1 − e−λ)
2 .

Suppose that the failure time of each subsystem has the Topp Leone-G (TLG(α) for short) distribution [9]
with CDF

HTLG (x;α,ψ) = {G (x;ψ) [2 −G (x;ψ)]}α = G (x;ψ)α [2 −G (x;ψ)]α , x ∈ R, α > 0,

where α is positive shape parameter, G (x;ψ) = G (x) is the CDF of the baseline distribution and ψ =
(ψ1,ψ2, . . . ,ψn) is the vector of the parameters. The corresponding PDF of the TLG family is given by

hTLG (x;α,ψ) = 2αg (x;ψ)G (x;ψ)α−1 [1 −G (x;ψ)] [2 −G (x;ψ)]α−1 , x ∈ R,

where g (x;ψ) = g (x) is the PDF of the baseline distribution. Let Yi denote the failure time of the ith

subsystem and X denote the time to failure of the first out of the N functioning subsystems. We can write

X = min{Y1, . . . ,YN},

so the conditional CDF of X given N is

F (x | N) = 1 − Pr (X > x | N) = 1 − Pr (Y1 > x)
N = 1 − (1 −HTLG (x;α,ψ))N ,

and the marginal CDF of X is

F (x) = FTL−GP (x) =

[
1 − e−λG(x;ψ)

(1 − e−λ)

]α [
2 −

1 − e−λG(x;ψ)

(1 − e−λ)

]α
, x ∈ R. (2.1)

The CDF in (2.1) is called CDF of the TL-GP family. The corresponding PDF is

f (x) = fTL−GP (x) =
2αλ

(1 − e−λ)
αg(x;ψ)e−λG(x;ψ)

[
1 − e−λG(x;ψ)

]α−1

×

{
1 −

[
1 − e−λG(x;ψ)

]
(1 − e−λ)

}{
2 −

[
1 − e−λG(x;ψ)

]
(1 − e−λ)

}α−1

, x ∈ R.
(2.2)
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The hazard rate function (HRF) can be calculated from f(x)/[1 − F(x)].
The justification for the practicality of new family is based on the wide use of the TL-G family. It

can be viewed as a suitable model for fitting the symmetric, unimodal, and right skewed data. The
proposed Topp Leone-exponential Poisson lifetime model is much better than the exponential, Moment
exponential, Marshall-Olkin exponential, Generalized Marshall-Olkin exponential, Kumaraswamy expo-
nential, Beta exponential, Marshall-Olkin Kumaraswamy exponential, Kumaraswamy Marshall-Olkin ex-
ponential models so the TL-exponential Poisson lifetime model is a good alternative to these models in
modeling relief times and survival times data sets (see applications 1 and 2) and the proposed Topp
Leone-Fréchet Poisson lifetime model is much better than the Fréchet, Marshall-Olkin-Fréchet, Gen-
eralized Marshall-Olkin-Fréchet, Kumaraswamy-Fréchet, Beta-Fréchet, Kumaraswamy Marshall-Olkin-
Fréchet and Marshall-Olkin Kumaraswamy-Fréchet in modeling gauge lengths data (see application 3).

3. Useful representation

Now we can provide a useful linear representation for the TL-GP density function in (2.2). Consider
the power series

(1 − z)b−1 =

∞∑
j=0

(−1)j Γ (b)
j! Γ (b− j)

zj =

∞∑
j=0

(−1)j
(
b− 1
j

)
zj, (3.1)

which holds for |z| < 1 and b > 0 real non-integer. Using the power series in (3.1) and after some algebra
the PDF of the TL-GP class in (3.1) can be expressed as

fTL−GP (x) =

∞∑
i=0

(−1)i
(
α− 1
i

)
2α−iαλg(x)e−λG(x)

A︷ ︸︸ ︷[
1 − e−λG(x)

]i+α−1

(1 − e−λ)
i+α

−

∞∑
i=0

(−1)i
(
α− 1
i

)
2α−iαλg(x)e−λG(x)

B︷ ︸︸ ︷[
1 − e−λG(x)

]i+α
(1 − e−λ)

i+α+1 .

Applying (3.1) to the quantities A and B we get

fTL−GP (x) =

∞∑
i,j=0

(−1)i+j
(
α− 1
i

)(
i+α− 1

j

)
2α−iαλg(x)

C︷ ︸︸ ︷
e−λ(j+1)G(x)

(1 − e−λ)
i+α

−

∞∑
i,j=0

(−1)i+j
(
α− 1
i

)(
i+α

j

)
2α−iαλg(x)

D︷ ︸︸ ︷
e−λ(j+1)G(x)

(1 − e−λ)
i+α+1 .

Expanding the quantities C and D in power series and after some algebra the PDF of the TL-GP class can
be expressed as

fTL−GP (x) =

∞∑
k=0

∞∑
i,j=0

α (−1)i+j+k
(
α−1
i

) [(
i+α−1
j

)
−
(
i+α
j

) (
1 − e−λ

)−1
]

2−(α−i)λ−(k+1) (j+ 1)−k k! (k+ 1) (1 − e−λ)
i+α

πk+1(x),

f (x) =

∞∑
k=0

tk πk+1(x),

(3.2)



T. H. M. Abouelmagd, et al., J. Nonlinear Sci. Appl., 12 (2019), 152–164 155

where

tk =

∞∑
i,j=0

α (−1)i+j+k
(
α−1
i

) [(
i+α−1
j

)
−
(
i+α
j

) (
1 − e−λ

)−1
]

2−(α−i)λ−(k+1) (j+ 1)−k k! (k+ 1) (1 − e−λ)
i+α

,

and πγ(x) = γg (x)G (x)γ−1. Equation (3.2) reveals that the PDF of X can be expressed as a simple
linear representation of exp-G densities. So, several mathematical properties of the new generator can be
obtained by knowing those of the exp-G density. The CDF of the TL-GP family can also be expressed as
a simple mixture of exp-G densities. By integrating (3.2), we obtain the same mixture representation

FTL−GP (x) =

∞∑
k=0

tk Πk+1(x),

where Πγ(x) is the CDF of the exp-G family with power parameter (γ).

4. Special models

4.1. TLE-P model

The PDF and CDF of the Exponentianl (E) distribution are given by (for x > 0)

g(x;β) = β e−βx and G(x;β) =
(
1 − e−βx

)
,

respectively, where β > 0 is a shape parameter. By g(x;β) inserting and G(x,β) in (2.2), the PDF of the
TLE-P model can be written as

fTL−EP (x) =
2αλβ

(1 − e−λ)
α e−βx−λ(1−e−βx)

[
1 − e−λ(1−e−βx)

]α−1

×

1 −

[
1 − e−λ(1−e−βx)

]
(1 − e−λ)


2 −

[
1 − e−λ(1−e−βx)

]
(1 − e−λ)


α−1

.

Plots PDF and the HRF of the TLE-P model are given on Figure 1.
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Figure 1: PDF and HRF plots for the TL-EP model.
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4.2. TL Fréchet-P model
The PDF and CDF of the Fréchet (Fr) distribution are given by (for x > 0)

g(x;β, δ) = βδβx−(β+1)e−( δx)
β

and G(x;β, δ) = e−( δx)
β

,

respectively, where δ > 0 is a scale parameter and β > 0 is a shape parameter, respectively. By g(x;β, δ)
inserting and G(x,β, δ) in (2.2), the PDF of the TLFr-P model can be written as

fTL−FrP (x) =
2αλβδβ

(1 − e−λ)
αx

−(β+1)e−(
δ
x)
β
−λe

−( δx)
β
[

1 − e−λe
−( δx)

β
]α−1

×

1 −

[
1 − e−λe

−( δx)
β
]

(1 − e−λ)



2 −

[
1 − e−λe

−( δx)
β
]

(1 − e−λ)



α−1

.

Plots PDF and the HRF of the TLFr-P model are given on Figure 2.
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Figure 2: PDF and HRF plots for the TL-EFr model.

5. Mathematical properties

5.1. Moments and generating function
The rth ordinary moment of X is given by µ′r = E(Xr) =

∫∞
−∞ xr f (x)dx. Then we obtain

µ′r =

∞∑
k=0

tk E(Y
r
k+1). (5.1)

Henceforth, Yγ denotes the exp-G distribution with power parameter (γ). Setting r = 1 in (5.1), we have
the mean of X. The sth incomplete moment, say ϕs (t), of X can be expressed from (3.2) as ϕs (t) =∫t
−∞ xsf (x)dx. Then

ϕs (t) =

∞∑
k=0

tk

∫t
−∞ xs πk+1(x)dx.
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The moment generating function (mgf) MX (t) = E
(
etX

)
of X can be derived from equation (3.2) as

MX (t) =

∞∑
k=0

tk Mk+1 (t) ,

where Mγ (t) is the mgf of Yγ. Hence, MX (t) can be determined from the exp-G generating function

5.2. Probability weighted moments (PWMs)
The (s, r)th PWM of X following the TL-GP family, say ρs,r, is formally defined by

ρs,r = E {X
s F(X)r} =

∫∞
−∞ xs F(x)r f (x) dx.

Using equations (2.1) and (2.2), we can write

f (x) F (x)r =

∞∑
k=0

pk πk+1(x),

where

pk =

∞∑
i,j=0

α (−1)i+j+k (j+ 1)k
(
αr+α−1

i

) [(
αr+α+i−1

j

)
−
(
αr+α+i

j

) (
1 − e−λ

)−1
]

k! (k+ 1) 2−(αr+α−i)λ−(k+1) (1 − e−λ)
αr+α+i

.

Then, the (s, r)th PWM of X can be expressed as

ρs,r =

∞∑
i,j=0

pkE
(
Ysk+1

)
dx.

5.3. Moments of order statistics
Let X1, . . . ,Xn be a random sample from the TL-GP family of distributions and let X(1), . . . ,X(n) be the

corresponding order statistics. The PDF of ith order statistic, say Xi:n, can be written as

fi:n (x) =
f (x)

B (i,n− i+ 1)

n−i∑
j=0

(−1)j
(
n− i

j

)
Fj+i−1 (x) , (5.2)

where B(·, ·) is the beta function. Substituting (2.1) and (2.2) in equation (5.2) we get

f (x) F (x)(n−i+1) =

∞∑
k=0

dk πk+1(x).

The PDF of Xi:n can be expressed as

fi:n (x) =

n−i∑
j=0

(−1)j
(
n−i
j

)
B (i,n− i+ 1)

∞∑
k=0

dk πk+1(x),

where

dk =

∞∑
w,m=0

α (−1)w+m+k (α(n−i+1)+α−1
w

) [(
α(n−i+1)+α+w−1

j

)
−
(
α(n−i+1)+α+w

m

) (
1 − e−λ

)−1
]

k! (k+ 1) (m+ 1)−k 2−(α(n−i+1)+α−w)λ−(k+1) (1 − e−λ)
α(n−i+1)+α+w .

Then, the density function of the TL-GP order statistics is a mixture of exp-G densities. Based on the
last equation, we note that the properties of Xi:n follow from those properties of Yk+1. For example, the
moments of Xi:n can be expressed as

E
(
X
q
i:n

)
=

n−i∑
j=0

(−1)j
(
n−i
j

)
B (i,n− i+ 1)

∞∑
k=0

dk E
(
Y
q
k+1

)
.
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6. Estimation

Let x1, . . . , xn be a random sample from the TL-GP distribution with parameters δ,a, and ψ. Let
Θ =(α, λ,ψᵀ)ᵀ be the p× 1 parameter vector. For determining the The maximum likelihood estimators
(MLEs) of Θ, we have the log-likelihood function

` = `(Θ) = n log (2) +n logα+n log λ−n (α− 1) log
(
1 − e−λ

)
+

n∑
i=1

logg(xi;ψ) − λ
n∑
i=1

G(xi;ψ)

+ (α− 1)
n∑
i=1

log zi +
n∑
i=1

log
[

1 −
zi

(1 − e−λ)

]
+ (α− 1)

n∑
i=1

log
[

2 −
zi

(1 − e−λ)

]
,

where
zi = 1 − e−λG(xi;ψ).

The components of the score vector, U (Θ) = ∂`
∂Θ =

(
∂`
∂α , ∂`∂λ , ∂`∂ψ

)ᵀ
, are

Uα =
n

α
−n log

(
1 − e−λ

)
+

n∑
i=1

log zi +
n∑
i=1

log

(
2 −

zi(
1 − e−λ

)) ,

Uλ =
n

λ
−
ne−λ (α− 1)(

1 − e−λ
) −

n∑
i=1

G(xi;ψ) + (α− 1)
n∑
i=1

wi
zi

−

n∑
i=1

(
1 − e−λ

)−1
wi

1 −
(
1 − e−λ

)−1
zi

− (α− 1)
n∑
i=1

(
1 − e−λ

)−1
wi

2 −
(
1 − e−λ

)−1
zi

,

and

Uψ = +

n∑
i=1

g′ (xi;ψ)
g(xi;ψ)

− λ

n∑
i=1

G′ (xi;ψ) + (α− 1)
n∑
i=1

mi
zi

−

n∑
i=1

(
1 − e−λ

)−1
mi

1 −
(
1 − e−λ

)−1
zi

− (α− 1)
n∑
i=1

(
1 − e−λ

)−1
mi

2 −
(
1 − e−λ

)−1
zi

,

where
wi = G(xi;ψ)e−λG(xi;ψ),g′ (xi;ψ) = ∂g (xi;ψ) /∂ψ,mi = G′ (xi;ψ) e−λG(xi;ψ),

and
G′ (xi;ψ) = ∂G (xi;ψ) /∂ψ.

Setting the nonlinear system of equations Uδ = Ua = 0 and Uψ = 0 and solving them simultaneously
yields the MLE Θ̂ = (α̂, λ̂, ψ̂ᵀ)ᵀ. To solve these equations, it is usually more convenient to use nonlinear
optimization methods such as the quasi-Newton algorithm to numerically maximize `.

7. Applications

The first data set called the failure Time data: The data represents the lifetime data relating to relief
times (in minutes) of patients receiving an analgesic. The data was reported by Gross and Clark [5] and
it has twenty (20) observations. The second data set called the survival times (in days) of 72 guinea
pigs infected with virulent tubercle bacilli, observed and reported by Bjerkedal [4], also used by Shibu
and Irshad [10]. The third data set (gauge lengths of 20 mm), which is introduced by [6], consists of
74 observations. We shall compare the fits of the TL-EP distribution with those of other competitive
models, namely: exponential (E), Moment exponential (Mom-E), Marshall-Olkin exponential (MO-E),
Generalized Marshall-Olkin exponential (GMO-E), Kumaraswamy exponential (Kw-E), Beta exponential
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(B-E), Marshall-Olkin Kumaraswamy exponential (MOKw-E), Kumaraswamy Marshall-Olkin exponential
(KwMO-E). We shall also compare the fits of the TL-FrP distribution with those of other competitive
models, namely: Fr, MO-Fr, generalized MO-Fr(GMO-Fr), Kw-Fr, B-Fr, KwMO-Fr, and MOKw-Fr.

Tables 1, 3 and 5 give the MLEs, (SEs) and [C.I.s] values for the three data sets respectively. Figures 3,
4 and 5 gives the estimated pdfs and estimated cdfs for the three data sets respectively.

Table 1: Table 1: MLEs, (SEs) and [C.I.s] values for the relief times data.
Models Estimates
E(β) 0.526

(0.117)
[0.29, 0.75]

Mom-E(β) 0.950
(0.150)
[0.66, 1.24]

MO-E(α,β) 54.474, 2.316
(35.582), (0.374)
[0, 124.21], [1.58, 3.04]

GMO-E(λ,α,β) 0.519, 89.462, 3.169
(0.256), (66.278), (0.772)
[0.02, 1.02], [0, 219.37], [1.66, 4.68]

KwE(a,b,β) 83.756, 0.568, 3.330
(42.361), (0.326), (1.188)
[0.73, 166.78], [0, 1.21], [1.00, 5.66]

B-E(a,b,β) 81.633, 0.542, 3.514
(120.41), (0.327), (1.410)
[0, 317.63], [0, 1.18], [0.75, 6.28]

MOKw-E(α,a,b,β) 0.133, 33.232, 0.571, 1.669
(0.332), (57.837), (0.721), (1.814)
[0, 0.78], [0, 146.59], [0, 1.98], [0, 5.22]

KwMO-E(α,a,b,β) 8.868, 34.826, 0.299, 4.899
(9.146), (22.312), (0.239), (3.176)
[10.94, 46.79], [0, 78.56], [0, 0.76], [0, 11.12]

TL-EP(λ,α,β) 66.194, 8.824, 0.169
(64.951), (4.739), (0.127)
[0, 193.49], [0, 18.11], [0, 0.42]

Table 2: AIC, BIC, CAIC, HQIC, A∗, W∗, K.S., and (p-value) for the relief times data.
Models AIC, BIC, CAIC, HQIC, A∗, W∗, K.S., and (p-value)

E(β) 67.67, 68.67, 67.89, 67.87 4.60, 0.96, 0.44, (0.004)
Mom-E(β) 54.32, 55.31, 54.54, 54.50 2.76, 0.53, 0.32, (0.07)
MO-E(α,β) 43.51, 45.51, 44.22, 43.90 0.8, 0.14, 0.18, (0.55)

GMO-E(λ,α,β) 42.75, 45.74, 44.25, 43.34 0.51, 0.08, 0.15, (0.78)
Kw-E(a,b,β) 41.78, 44.75, 43.28, 42.32 0.45, 0.07, 0.14, (0.86)
B-E(a,b,β) 43.48, 46.45, 44.98, 44.02 0.70, 0.12, 0.16, (0.80)

MOKw-E(α,a,b,β) 41.58, 45.54, 44.25, 42.30 0.60, 0.11, 0.14, (0.87)
KwMO-E(α,a,b,β) 42.8, 46.84, 45.55, 43.60 1.08, 0.19, 0.15, (0.86)

TL-EP(λ,α,β) 37.56, 40.55, 39.06, 38.15 0.23, 0.04, 0.10, (0.99)

From tables 2 and 4, the proposed TL-EP lifetime model is much better than the Exp, M-E, MO-
E, GMO-E, Kw-E, BE, MOK-E, and KMO-E models so the TL-EP lifetime model is a good alternative to
these models in modeling relief times and survival times data sets as well as the proposed TL-Fr P lifetime
model is much better than the Fr, MO-Fr, GMO-Fr, K-Fr, B-Fr, KMO-Fr, and MOKw-Fr in modeling gauge
lengths data, see Table 6.
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Table 3: MLEs, SEs, C.I.s (in parentheses) values for the survival times data.
Models Estimates
E(β) 0.540

(0.063)
[0.42, 0.66]

Mom-E(β) 0.925
(0.077)
[0.62, 1.08]

MO-E(α,β) 8.778, 1.379
(3.555), (0.193)
[1.81, 15.74], [1.00, 1.75]

GMO-E(λ,α,β) 0.179, 47.635, 4.465
(0.070), (44.901), (1.327)
[0.04, 0.32], [0, 135.64], [1.86.7.07]

KwE(a,b,β) 3.304, 1.100, 1.037
(1.106), (0.764), (0.614)
[1.13, 5.47], [0, 2.59], [0, 2.24]

B-E(a,b,β) 0.807, 3.461, 1.331
(0.696), (1.003), (0.855)
[0, 2.17], [1.49, 5.42], [0, 3.01]

MOKw-E(α,a,b,β) 0.008, 2.716, 1.986, 0.099
(0.002), 1.316), (0.784), (0.048)
[0.004, 0.01], [0.14, 5.29], [0.449, 3.52], [0, 0.19]

KwMO-E(α,a,b,β) 0.373, 3.478, 3.306, 0.299
(0.136), (0.861), (0.779), (1.112)
[0.11, 0.64], [1.79, 5.17], [1.78, 4.83], [0, 2.48]

TL-EP(λ,α,β) 3.642, 11.327, 0.053
(0.877), (14.012), (0.069)
[1.92, 5.36], [0, 38.79], [0, 0.19]

Table 4: AIC, BIC, CAIC, HQIC, A∗, W∗, K.S., and (p-value) for survival times data.
Models AIC, BIC, CAIC, HQIC A∗, W∗, K.S., and (p-value)

E(β) 234.63, 236.91, 234.68, 235.54 6.53, 1.25, 0.27, (0.06)
Mom-E(β) 210.40, 212.68, 210.45, 211.30 1.52, 0.25, 0.14, (0.13)
MO-E(α,β) 210.36, 214.92, 210.53, 212.16 1.18, 0.17, 0.10, (0.43)

GMO-E(λ,α,β) 210.54, 217.38, 210.89, 213.24 1.02, 0.16, 0.09, (0.51)
Kw-E(a,b,β) 209.42, 216.24, 209.77, 212.12 0.74, 0.11, 0.08, (0.50)
B-E(a,b,β) 207.38, 214.22, 207.73, 210.08 0.98, 0.15, 0.11, (0.34)

MOKw-E(α,a,b,β) 209.44, 218.56, 210.04, 213.04 0.79, 0.12, 0.10, (0.44)
KwMO-E(α,a,b,β) 207.82, 216.94, 208.42, 211.42 0.61, 0.11, 0.08, (0.73)

TL-GP(λ,α,β) 205.23, 212.06, 205.58, 207.94 0.53, 0.08, 0.07, (0.83)
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Figure 3: Estimated pdf’s and estimated cdf’s for failure time data.



T. H. M. Abouelmagd, et al., J. Nonlinear Sci. Appl., 12 (2019), 152–164 161

Estimated pdf’s

t

f(t
)

0 1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

B−E

TL−EP

0 1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated cdf’s

t

F(
t)

B−E

TL−EP

Figure 4: Estimated pdf’s and estimated cdf’s for the guinea pigs survival times data.

Table 5: MLEs, SEs, C.I.s (in parentheses) values for the gauge lengths data.
Models Estimates
Fr(β, δ) 4.110, 2.169

(0.323) (0.065)
[3.48, 4.74], [2.04, 2.29]

MO-Fr(α,β, δ) 80.338, 8.031 1.419
(62.007), (0.764), (0.109)
[0, 201.87], [6.53, 9.53], [1.21, 1.63]

GMO-Fr(λ,α,β, δ) 3.702, 63.707, 5.918, 1.577
(2.683), (38.655), (0.945), (0.139)
[0, 8.96], [0, 139.47], [4.06, 7.77], [1.30, 1.85]

Kw-Fr(a,b,β, δ) 3.218, 217.031, 1.005, 4.384
(1.036), (268.565), (0.223), (1.012)
[1.18, 5.25], [0, 743.42], [0.57, 1.44], [2.40, 6.37]

B-Fr(a,b,β, δ) 2.039, 5.857, 0.242, 37.179
(1.015), (1.813), (0.377), (33.510)
[0.04, 4.02], [2.30, 9.41], [0, 0.98], [0, 102.85]

KwMO-Fr(α,a,b,β, δ) 0.016, 0.827, 16.985, 0.894, 25.127
(0.023), (0.789), (24.975), (0.396), 19.688)
[0, 0.06], [0, 2.37], [0, 65.93], [0.11, 1.67], [0, 63.72]

MOKw-Fr(α,a,b,β, δ) 7.995, 2.933, 35.707, 1.221, 2.415
(13.063), (0.825), (41.500), (0.412), (1.032)
[0, 33.59], [1.31, 4.55], [0, 117.05], [0.41, 2.03], [0.39, 4.44]

TL-FrP(λ,α,β, δ) 71.411, 0.452, 1.524, 8.324
(82.496), (0.317), (0.588), (3.839)
[0, 233.10], [0, 1.07], [0.37, 2.67], [0.79, 15.85]

Table 6: AIC, BIC, CAIC, HQIC, A∗, W∗, K.S., and (p-value) for gauge lengths data.
Models AIC, BIC, CAIC, HQIC A∗, W∗, K.S., and (p-value)
Fr(β, δ) 142.02, 146.63, 142.19, 143.86 2.93, 0.46, 0.15, (0.09)

MO-Fr(α,β, δ) 115.06, 121.96, 115.40, 117.81 0.78, 0.12, 0.07, (0.86)
GMO-Fr(λ,α,β, δ) 112.80, 122.00, 113.37, 126.48 0.39, 0.07, 0.06, (0.94)
Kw-Fr(a,b,β, δ) 113.68, 122.82, 114.25, 117.36 0.37, 0.07, 0.05. (0.92)
B-Fr(a,b,β, δ) 112.63, 121.84, 113.21, 116.30, 0.44, 0.07, 0.06, (0.93)

KwMO-Fr(α,a,b,β, δ) 113.30, 124.82, 114.18, 117.90 0.34, 0.05, 0.06, (0.95)
MOKw-Fr(α,a,b,β, δ) 113.19, 124.68, 114.07, 117.78 0.35, 0.05, 0.05, (0.94)

TL-FrP(λ,α,β, δ) 111.00, 120.22, 111.58, 114.68 0.30, 0.03, 0.06, (0.97)
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Figure 5: Estimated pdf’s and estimated cdf’s for the gauge lengths data.

8. Goodness-of- fit test for TL-GP family in complete data case

We present our approach to give explicitly a chi-squared test based on Nikulin-Rao-Robson (NRR)
statistic for complete observations in sections, where we showed the practice of the proposed goodness of
fit tests and the usefulness of the TLE-P family by applying them to two real data.

8.1. NRR statistic tes for complete data

The well-known NRR statistic (Y2
n(Θ̂n)) is one of famous modified classical chi-squared goodness-of-

fit test (GOF) that was introduced by Nikulin [7] and Rao and Robson [8]. This statistic test is based on the
differences between theoretical and empirical probabilities to fall into grouping cells. It use the maximum
likelihood estimation on the initial data, follows a chi-square distribution (for more details see Voinov
et al. [11]). Let X = (X1,X2, . . . ,Xn)

T be a random sample of n independent and identically distributed
random variables. The problem is to test the null composite hypothesis H0 according to which

H0 : PΘ(Xi 6 x) = F(x,Θ), x ∈ R, Θ = (θ1, θ2, . . . , θs)T ,

and νj = (ν1,ν2, . . . ,νr)T is the vector of frequencies (where
∑k
j=1 νj = n) obtained by grouping Xi into

r intervals Ij:
Ij =

]
aj−1,aj

]
;−∞ < a1 < · · · < ar−1 < ar = +∞.

The boundaries of intervals aj are given by:

aj = F
−1
(
j

r

)
, j = 1, . . . , r− 1.

The NRR statistic; with Θ̂n as a maximum likelihood estimator of the parameter vector Θ, is defined by

Y2
n(Θ̂n) = X

2
n(Θ̂n) +

1
n
LT (Θ̂n)(I(Θ̂n) − J(Θ̂n))

−1L(Θ̂n).

The Pearson’s statistic is
X2
n(Θ) = X

T
n(Θ)Xn(Θ),

where

Xn(Θ) =

(
ν1 −np1(Θ)√

np1(Θ)
,
ν2 −np2(Θ)√

np2(Θ)
, · · · ,

νr −npr(Θ)√
npr(Θ)

)T
.

The vector of probabilities is
p(Θ) = (p1(Θ),p2(Θ), . . . ,pr(Θ))T ,



T. H. M. Abouelmagd, et al., J. Nonlinear Sci. Appl., 12 (2019), 152–164 163

with
pj(Θ) =

∫aj
aj−1

f(x,Θ)dx, j = 1, 2, . . . , r.

The I(Θn) represents the Fisher information matrix, and

l(Θ) = (l1(Θ), . . . , ls(Θ))T ,

with

lk(Θ) =

r∑
i=1

νi
pi

∂pi(Θ)

∂Θk
.

where J(Θ) = B(Θ)TB(Θ) is called the Fisher information matrix of multinational distribution with pa-
rameters p(Θ), where

B(Θ) =

[
1
√
p
i

∂pi(Θ)

∂µ

]
r×s

, i = 1, 2, . . . , r ∀ k = 1, . . . , s.

Under the null hypothesis H0; the NRR (Y2
n(Θ̂n)) statistic follow a chi-square distribution with r − 1

degrees of freedom. So, for any fixed x > 0, we have:

lim
n→∞P(Y2

n(Θ̂n) > x) = P(χ2
r−1 > x).

8.2. Validity of TL-EP and TL-FrP models
We want to test the null hypothesis H0 according to which the distribution of the sample X =

(X1,X2, . . . ,Xn)T verifies

H0 : P(Xi 6 x) = FTL−EP(x;Θ), Θ = (α, λ,β)T , x > 0,

and
H0 : P(Xi 6 x) = FTL−FrP(x;Θ), Θ = (α, λ,β,γ)T , x > 0,

where FTL−EP(x;Θ) and FTL−FrP(x;Θ) are the CDF of the TL-EP and TL-FrP distributions respectively.

9. Conclusions

We study a new family of distributions defined by the minimum of the Poisson random number of
independent identically distributed random variables having the Topp Leone-G distribution. Some math-
ematical properties of the new family including are derived. Maximum likelihood estimation of the model
parameters is investigated. The new family can be viewed as a suitable model for fitting the symmetric,
unimodal, and right skewed data sets. Two special models of the new family are discussed. We perform
three applications to real data sets to show the potentiality of the proposed family. We conclude that
the proposed Topp Leone-exponential Poisson lifetime model is much better than the exponential, Mo-
ment exponential, Marshall-Olkin exponential, Generalized Marshall-Olkin exponential, Kumaraswamy
exponential, Beta exponential, Marshall-Olkin Kumaraswamy exponential, and Kumaraswamy Marshall-
Olkin exponential models so the Topp Leone-exponential Poisson lifetime model is a good alternative
to these models in modeling relief times and survival times data sets as well as the proposed Topp
Leone-Fréchet Poisson lifetime model is much better than the Fréchet, Marshall-Olkin-Fréchet, Gen-
eralized Marshall-Olkin-Fréchet, Kumaraswamy-Fréchet, Beta-Fréchet, Kumaraswamy Marshall-Olkin-
Fréchet, and Marshall-Olkin Kumaraswamy-Fréchet in modeling gauge lengths data. In order to test
the validity of the new family, a modified Chi-squared goodness-of-fit test based on Nikulin-Rao-Robson
statistics is proposed and developed for the new family with unknown parameters by using the maximum
likelihood estimation. We also demonstrate the applications of this model by applying it to two real data.
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